Source code for pydelfini.delfini_core.models.metric_list

from typing import Any
from typing import Dict
from typing import List
from typing import Type
from typing import TypeVar
from typing import Union

from attrs import define as _attrs_define

from ..models.event_metric import EventMetric
from ..models.metadata_metric import MetadataMetric


T = TypeVar("T", bound="MetricList")


[docs] @_attrs_define class MetricList: """MetricList model Attributes: metrics (List[Union['EventMetric', 'MetadataMetric']]): """ metrics: List[Union["EventMetric", "MetadataMetric"]]
[docs] def to_dict(self) -> Dict[str, Any]: """Convert to a dict""" metrics = [] for metrics_item_data in self.metrics: metrics_item: Dict[str, Any] if isinstance(metrics_item_data, MetadataMetric): metrics_item = metrics_item_data.to_dict() else: metrics_item = metrics_item_data.to_dict() metrics.append(metrics_item) field_dict: Dict[str, Any] = {} field_dict.update( { "metrics": metrics, } ) return field_dict
[docs] @classmethod def from_dict(cls: Type[T], src_dict: Dict[str, Any]) -> T: """Create an instance of :py:class:`MetricList` from a dict""" d = src_dict.copy() metrics = [] _metrics = d.pop("metrics") for metrics_item_data in _metrics: def _parse_metrics_item( data: object, ) -> Union["EventMetric", "MetadataMetric"]: try: if not isinstance(data, dict): raise TypeError() componentsschemasmetric_type_0 = MetadataMetric.from_dict(data) return componentsschemasmetric_type_0 except: # noqa: E722 pass if not isinstance(data, dict): raise TypeError() componentsschemasmetric_type_1 = EventMetric.from_dict(data) return componentsschemasmetric_type_1 metrics_item = _parse_metrics_item(metrics_item_data) metrics.append(metrics_item) metric_list = cls( metrics=metrics, ) return metric_list